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Abstract

The notion of ¢,-stability recently was introduced. In this paper, we will extend this
notion to the so-called eventual ¢,-stability for impulsive systems of differential equa-
tions under more relax conditions. Our technique depends on Lyapunov’s direct
method.
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1. Introduction

Systems of differential equations are adequate mathematical models for
numerous processes and phenomena studied in biology, physics technology,
etc. In recent year the mathematical theory of these systems has been developed
by a great numbers of mathematicians Bainov and Simeonov [2], Lakshmi-
kantham et al. [6], and Somoilenko and Perestyuk [10]. For more detailed
bibliographies on the subject, see [3].

The main purpose of this paper is to discussed the notion of eventual
¢,-stability for impulsive systems of differential equations. The motivation of
this work is the recent work of [4,7-9]. The paper is organized as follows.
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In Section 1, we introduce some preliminaries definitions and results which will
be used throughout the paper. In Section 2, we discussed the notion of eventual
¢,-stability for impulsive system of differential equations.

Let R, be the s-dimensional Euclidean space with a suitable norm || - ||. Let
R =1[0,00), R, ={x e R : x| < H}.

Consider the system of differential equations with impulses

X' = f(t,x) +R(t,y), 1 # (X, ), Ax|t:ri(x,y) :At(x) +Bt(y)7 (1 1)
y,:h(t’x’y)7 I#Tl‘(xhy)? Ay|1:‘z:,-(x,y) :Cf(xay)7 '

where x€R", yeR", f:R" xRN, >R, R: R xR - R", h:R"x
R, xR, >R, 4, R, — R, B R, — R, C R, xR, — R, 10 R, x
R — R

Letty € R, x0 € M}, 3o € Ny Let x(¢, 10, X0, 30), ¥(2, fo, X0, o) be solutions of
the system (1.1), satisfying the initial conditions x(# + 0, %,xo,0) = Xo,
¥(to + 0, 2o, x0,30) = »o. The solution (x(¢),y(¢)) of the system (1.1) are piecewise
continuous functions with points of discontinuity of the first type in which they
are left continuous, i.e. at the moment ¢, when the integral curve of the solution
(x(2),»(¢)) meets the hypersurface

o ={(t,x,y) € RT x R, x N : t=r1,(x,»)}.
The following relations are satisfied:
x(t; —0) = x(t;), Ax|,_, =A4,(x(%)) +B(4)),
Wt =0) =y), Ayl = Clx(n),y(n)),
together with system (1.1), we consider the following system with impulses:
Y= %), (£ T0), Avl_ 0 = Ax). (1.2)
Let
se={(t,x) € R" x R}, : t = 7,(x,0)}.

We introduce the following definition depending on that given in [1,5]:

Definition 1. A proper subset K| of R" or a proper subset K, of R" is called a
cone if

(i) AK; CK;, 1 =0,
(i) K +K; C K,
(i) K; = K,
(i) K, #0.
V) KN (=K;)) ={0},i=1,2.
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where K; and K, denote the closure and interior of K; respectively, and 3K;
denotes the boundary of K;, i = 1,2, it follows that K = K; UK, C R" U R" be
a cone in R" U R"™.

We introduce the following definitions as given in [1,5]:

Definition 2. The set K* is called the adjoint cone if

K'={peRUR":(p,x+y) =20 forxek CcK,yeKk, CK}

satisfies the properties (i)—(v) of Definition 1, where (¢,x+y)<
Il (lxIl + I¥])- For m > n, and x = (x1,x2,...,%,), ¥ = 1,02, - - Vm). Thus
X+y= (x17x27 s 7xn7) + (J/1,J/2, s 7ym)
= (xl +y]7x2 +J/2, sy Xn +yn7yn+la v 7ym)7

x € OK; iff (¢,x) =0 for some ¢ € K, K;; = Ko — {0}, i =1,2.

Definition 3. A function F : D — R", D C R" is called quasimonotone relative
to the cone K;, i = 1,2, if x,y € D and y —x € 0Kj, then there exists ¢, € K},
such that (¢y,y —x) =0 and (¢, F(y) — F(x)) = 0.

Definition 4. A function /(r) is said to be belong the class # if y € C[RT, RT],
(0) =0, and (r) is strictly monotone increasing in r.

Let 7o(x,y) = 0 for (x,y) € R}, x R},. Following [4] we define the sets
Ii={(t,x,y) € R x R, x R 1 ti1(x,p) <t <twlx,p)},
Q ={(t,x) € R" xR}, : 1,1(x,0) < t < 1,(x,0)}.

As in [4], we use the classes 77y and %", of piecewise continuous functions
which are analogue to Lyapunov functions.

Definition 5 [4]. We say that the function V : R* x R}, x R}, — K belongs to
the class 77 if the following conditions hold:

(1) The function ¥ is continuous in (J;°, I'; and is locally Lipschitzian with
respect to x and y in each of the sets I';.
(2) V(¢,0,0) =0 for t € R,
(3) For each i =1,2,... and for any point (#y,x,n) € o, there exist the finite
limits
V(t() - 07x0,J’0) = hm V(tvxay)7

(tx.y)—=(t0.%0.30)
(txy)€G;
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V(t0+07x05y0) = lim V(trxay)v
(tx.p)—(to%0.00)
(tx.0)€Gi1
and the equality V(¢ — 0,x0,0) = V (to,x0,0) holds.
(4) For any point (¢,x,y) € g,, the following inequality holds:

V(t+0,x+A4,(x) +B(y),y+ Ci(x,») <V(t,x,). (1.3)

Definition 6 [4]. We say that the function 7 : I x R}, — K belongs to the class
Wy if the following conditions hold:

(1) The function W is continuous in |J°, 2; and is locally Lipschitz with
respect to x in each of the sets ;.

(2) W (t,0) =0 for t € R".

(3) There exist the finite limits

W(f() — O,XO) = lim W(t,x),
(tx)=(t9,%0)
(tx)€Q;
W(l() + O,Xo) = lim W(t,x),
(tx)—(to%0)
(tx)€Q;

and the equality W (t — 0,x0) = W (ty,x) holds.
(4) For any point (z,x) € s,, the following inequality holds:

W(t+0,x+A4,(x)) <W(t,x). (1.4)

Let Ve€v, and x(¢), y(t) be the maximal solution of (1.1), for
(t,x,y) € U2, I's, following [4] we define

W(tx,y) = lm[V (e + 5,5+ s(f(1,x) + (6,)), + sh(t,x,y)) = V(6,5 3)];
and
V(,Z.l)(tvx’y) :D+V(t,x,y), t # ti(x, ),

where D'V (z,x,y) is the upper right Dini derivative of the function V' (¢,x,y).

Analogously one can define the function W}, , (#,x) for an arbitrary function
W e W, for (t,x) € U2, Q.. The following definition is new and related with
that of [1,4]:

Definition 7. The zero solution of system (1.1) is said to be eventual ¢,-equi-
stable if for all € >0, for all 7, € R*, there exists & = d(¢y,€) > 0, for all
(x0,30) € (M}, x RY), such that
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(d)OaxO ero) <90
implies (¢O7x(t7 1073‘07)’0) +y(t7 f07x0>)’0)) < €, t 2 tO 2 70,

where ¢, € K;. In the case of uniformly eventually ¢,-stable, ¢ independent
of 1.

Any eventual ¢,-equistability concepts can be similarly defined.

Definition 8. We say conditions (A) hold if the following conditions are sat-
isfied:

(A1) The functions f(¢,x), R(¢,y) and A(t,x,y) are continuous in their defini-
tions domains and f(¢,x) is quasimonotone in x relative to the cone K,
R(t,y) is quasimonotone in y relative to the cone K, and 4(¢,x,y) is quasi-
monotone in x relative to the cone K, quasimonotone in y relative to the
cone K, f(¢,0) = R(¢,0) = 0, h(£,0,0) = 0 for t € R".

(A;) There exists a constant L > 0 such that

h(t,x,y) <L, (t,x,y) € R" x R}, x N,.

(A3) There exists a continuous function P:7 — I such that P(0) =0 and
IR(t, )| < P(|I¥]]) for (£,x) € R x Ry

(A4) The functions 4,, B;, C, are continuous in their definitions domains and
A,(O) = Bt(o) = Ct(0,0) =0.

(As) If xeRy, and ye®Ry,, then |[x+4,(x)+B:()|<|xl|, and
ly+ ey <yl i=1,2.

(Ag) The functions t;(x, y) are continuous and for (x,y) € R}, x R}, the follow-
ing relations hold: 0 < 1(x,y) < 1a(x,y) < -+ < lim,_ 7;,(x,y) = 00
uniformly in R}, x R}, and

inf 7,.(x,y)— sup (xy)=0>0, i=12,....

9y xRy R xR

(A7) For each point (f,x0,%) € R" x Ry, x R}, the solution x(¢,1,xo),
(¢, t0,x0,)0) of the system (2.1) is unique and defined in (¢, 00).

(Ag) For each point (f,x) € R x R}, the solution x(¢,,xo) of system (1.2)
satisfying x(# + 0, #y, X0) = xo is unique and exists for all z € (¢, c0).

(Ag) The integral curve of each solution of system (1.1) meets each of the
hypersurfaces {g;} at most once.

2. Main results

In this section, we give a partial generalization of the work of Kulev and
Bainov [4].
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Theorem 1. Assume that

(H1) The condition (A) holds.
(Hy) There exist functions V. € vy, a,b € A such that

a(d)Oux"’_y) < (d)0> V(t>x>y)) <b(¢0>x+)’)a (t7x>y) € “RJr X 9{’111 X “RI’;

(H3) V(/ZAI)(tvxmy) < G(ta V(taxvy)) _fOI" (t7x7y) S Urh
i=1

Ukt
/ Gls, V(s5,2))ds < V(tosx0,30)s  [tstis1] C (10, 00),

t;

where G € C|R", R™] and G(t,0) = 0.
Then the zero solution of the system (2.1) is uniformly eventually ¢,-stable.
Proof. Let 0<e<H and f# €N, assume that ¢ <7 (x,y) for

(t,x) € Ry, x R}, Since V(¢,0,0) =0 and from Definition 5, it follows that
there exists a 0; = d1(f, €) > 0 such that

||X0|| + ||y0|| < 0y 1mplles V(f() + O,XO,y()) < a1(€), a €.
Now for some ¢, € Ky,
[[dollllxo + ol < l[@ol[0r implies [y |[[[V (0 + 0,0, 30)[| < [Ibolai (€)-

Thus
(0,0 +30) <[ @ollllxo + yoll < [Iolly
implies
(o, V(20 +0,x0,30)) < [l poll[[V (20 + 0,0, 30) | < [l o lla(€)-

Thus it follows that
(9, %0 +10) < & implies (¢, V(o + 0,x0,10)) < a(e), (2.1)

where [[¢[61 = 0 and ||py|lai(e) = a(e).

Let xo€ Ry, we Ry, (doxo+n)<d and let x(z) =x(t t,x0,)),
y(t) = y(¢,t0,x0,10) be the maximal solution of (1.1). Then by (H,) and for
€ > 0,let 6 = b '[a(e)/2] independent of ¢, for a,b € A". Let xo € Ry, o € R,
(g, X0 + 1) < 0 and from (1.3) and (H3), we get
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a(¢o, x(1) + y(1)) < (o, V (1, x,¥))
tet1
<oVl 0 + (s [ GV )05 )
173

< b(¢o, V(to +0,x0,30)) + (P, V (10, %0, 30))
<< (d)mxo + W)

<b(9)

<ale)

for ¢t = ty = 1. Therefore (¢, x(¢) + y(¢)) < e. Hence the zero solution of sys-
tem (1.1) is uniformly eventually ¢,-stable. O

Theorem 2. Suppose that the assumptions of Theorem 1 be satisfied except the
condition (H3) being replaced by the condition

(Ha) (o, Vo (t,3,)) < = g(0)(bg, ), (,%,9) € RTx Ry x Ry, g€ A

We further assume that
(Hs) There exist functions W € W'y and ay,by € A" such that

a1(¢07x) < W(tvx) <b1(¢0’x)’ (tvx) €N x 9{nH
(Hg) There exist functions W € W'y and g,(t) € A" such that

o]

W,22)(t x) 7g1< )(W(tax))a (tvx) € UQI

i=1

(Hy) [[W(tx1) = W(t,02) | < llxi = o]

If the zero solution of (2.1) is equi-asymptotically ¢-stable, then it is uniformly
eventually asymptotically ¢,-stable.

Proof. From the assumption of equi-asymptotically ¢,-stable, then for € > 0,
T > 0, there exist 6 > 0, T > 0 such that
(o, x0 +10) < 0 implies (¢pg,x(t) +y(t)) <€, t=to+T,t = 10,
(2.2)
where T = (n — 1)[T;(e) + Tx(¢€)].
By Theorem 1, it follows that the zero solution of the system (1.1) is uni-

formly eventually ¢,-stable. Therefore for any 0 < e < M, there exists 6 = d(e)
such that

(¢, x +y) < € whenever (¢, xo + 1) <9, t>t) = 1. (2.3)
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Going through as in [4] Theorem 1 we choose d; = d,(¢) > 0 such that
d1(€) <1d(e), and

1 1
P(S)<ﬁg1(a1<§5>) for Ogsgél, (24)

where ¢ is Lipschitz constant for the function W. Moreover let T} = Ti(e) > 0
and T, = T»(¢) > 0 such that

b(M) — a(31)

Ti(e) > ——F———=, 2.5
206y (M) —ay (L6

T(e) > [ 1( ) 1a1(2 1)] (2.6)

g1 (01551)

Let the positive integer v be such that

o1g(Lo

b(H) — (v — 1)% <0. (2.7)

Let to € R, (Pg,x0 + ) < 6. Assume that for all ¢ € [ty, ) + T;] the inequality
(¢, ¥(t)) = 16, holds. Then from (H,), we obtain

(d)Oa V(2'l)(t>x7y)),< —g(q’)o,y(l)) < —g(%51)7
tE€ (to,to+ T, t# t(x(t),»(0)), i=12,... (28)

By integrating (2.8) on [t, % + 71] and making use of (1.3), (H;), and (2.5) we
get

o 301) <atuirtin + 7+ 5000+ 1)
< (¢0’ V(lo + T],x(to + T]),y(fo + Tl))) from (H3)

1
< (o, V(2o + 0,0, 30)) — g(§51> 7y from integrating (2.8)
1
< b(¢ho,x0 +30) — g(§51> Ty from (Hs)and (1.3)
1
<b(9) —g<§51)T1

<b(M) — g(151> bM) —a(300) ¢ o (2.5)
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which is a contradiction. Thus there exists &, t, < &, < fy + T; such that

1 : 10 1
(do:3(&)) <501 ie IS Frp <501 (29)

||\W

To prove that for any ¢ € [£,1)+ Ty + T3] the inequality (¢, y(1)) < <30
holds, then there exists &, € [&,7 + 77 + T»] such that (¢, x(&)) <34. Sup-
pose this is false, then by (Hs), (Hg), and A;, in view of (2.4) we obtain

1 1
Moyt < — g (@(30)) for € e+ T T, 1 5(x0)00)
(2.10)
By integrating (2.10) on [&), 4 + T; + T»] and making use of (Hs), (1.4), and
(2.6), thus there exists &, € [, + T} + T] such that

(borx(&)) <3 then (dy.x(&) + (&) <50 +50 <0,

Now, it follows from uniform ¢,-stability that if
(o, x(1) +3(1)) < e fori> &

holds, then
(o, x(t) +¥(t)) < e fort>ty+ Ti(e) + Tr(e).

Now, let us suppose that there exists & € [&),4 + T + 5] for which
(¢, (&) =61 and let & =inf{r € [, 60+ T + D) : (¢g,»(¢)) = 61}, then
(¢, ¥(E5)) <1 and (¢, ¥(1)) <  for 1 € [¢1, &]. TF (¢, ¥(E5)) < 0y, then from
the definition of &, it follows that (¢g, (&5 +0)) >0, hence &=
7,.(x(&5),y(&;)) for some positive integer 7. But then from (As), we obtain that

(0, 1(Es +0)) = (o, ¥(&5) + Co(x(E5),1(E5))) <ol (Es)l < o,

which is a contradiction. Thus

((pan(éS)) =01, &F Ti<x(55)ay(£5))a i=12,...

Now using (As), we conclude that there exists &y, & < & < & <ty < T + Th,
such that &, # 7,(x(&),»(&)), i=1,2,...,

1 1
(o, ¥(&4)) = 551 and 551 < (o, ¥(2)) < 61 for t € (&4, Es)s
by (A,), it follows that
d
St for 1 # 5 ).0(0), =12,

Since the zero solution of (1.1) is equi-asymptotically ¢,-stable, we can obtain
that & — & > 2. Thus by (Hy), it follows that
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I 1
(Y 053)) < ~ 200 < —g(501) forr€ [en]
t# nu(x(t),p(t), i=12,... (2.11)

Also by integrating (2.11) and making use of (1.3), we obtain

(VGG < (Y (EaE () — £ 50 ) & - €

o1

< (b0, V(Eax( )y(@)))—g(%al)i.

Thus we have proved that if (¢,,xo + 1) < 0, the following two cases are
possible:

(1) (o, x(t) +¥(1)) <€ t=to+Ti+ T, or
(2) there exist &y, &5, tp < & < &5 < to + Ty + T» such that

(e V(G0 < (Y (@ r(E) — £ 50 51

In the same way we prove that one of the following two possibilities takes
place:

(1) (o, x(1) + (1)) <€, t = to + 2[Ti(€) + Ta(e)], or
(2) there exist &, &g, to+ T1 + Th < & < &g < fo + 2[T} + T»] such that

(¥ (G (), E0) < (0, P (Eox(E) @)~ (301) 55

By induction we can prove that if (¢, x(¢) + y(¢)) < 5, we have one of the
following two cases:

(1) (¢, x(t) + (1)) <€, t = to + (n = 1)[Ti(€) + Ta(e)], or
(2) there exist Cs,-1, &spr fo+ (n— 1)[T1 + D) < &5,y < &, < to + 0Ty + T
such that

(e () (E50) € BV (G 13(Esr 3G — (500 31

If for any positive integer n > v the second one holds, then by &5,y < o+
(n—1)[Ty + T5) < &,_1. Thus from (Hy4), and (2.7), we obtain
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(o, V(Esi,x(Es0), ¥(E5))) < (o, V(Esur5 x(E5u1), (E50-1))) — g(%@) j—i

1 0
< (o, V(Esp-1)s ¥(Esu1)), ¥(Es0-1)))) — g<§51) i

. 1 20
< (o5 V(Esp—1)-15%(Es(v-1)=1), Y(Esv-1)-1))) — g<251) 27141

(V — 1)51

< <Gt - g(50) U5

1 -1
Then

(¢0, X0 +0) < & implies (¢g,x() + (1)) <e,
t= ty + (}’l — 1)[T1(6) + Tz(é)]

We can take T = (n — 1)[T1(€) + T»(¢)]. Thus
((]50,)60 +y()) <9 1mphes (¢0ax(t) +y(t)) <e t=zth+T.

Then the zero solution of the (1.1) is uniformly eventually asymptotically
¢,-stability and the proof is completed. [
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